Heat Generation in Computational Processes
نویسندگان
چکیده
How much energy must be used in a computation? Landauer [1] answered to this question in 1961 as follows: “Logical irreversibility implies physical irreversibility” (p.186 in Ref. [1]) and requires a finite amount of heat generation. A data-erasing operation is generally irreversible and induces the heat generation, which corresponds to a cost of energy, kT ln 2/bit (at least), while a reversible operation such as copying can be free of any cost of energy. It seems that Landauer’s theory has been accepted widely since then [2,3]. Recently, however, Goto et al. disputed it and claimed that it is possible to erase information without producing heat generation by using Quantum Flux Parametron devices [4]. The controversy has lead us to a recognition of several problems which relate to the thermodynamics of computations and are still left unclear: During the computational processes, q1. when does the heat generation occur? q2. when is the energy consumed? q3. when does the entropy increase (and when does it decrease)? q4. how should the thermodynamic entropy of computational devices be defined?
منابع مشابه
Simulation of Tool Rotation and Travelling Speed Effects on Friction Stir Welding of Ti-6Al-4V
In this research, the effects of parameters include tool rotational and traverse speeds were investigated on heat generation and material flow during friction stir welding of Ti-6Al-4V alloy with computational fluid dynamics (CFD) method. Simulation results showed that with increasing of tool rotational and decreasing tool traverse speed, the more frictional heat generates which causes formatio...
متن کاملSimulation of Tool Rotation and Travelling Speed Effects on Friction Stir Welding of Ti-6Al-4V
In this research, the effects of parameters include tool rotational and traverse speeds were investigated on heat generation and material flow during friction stir welding of Ti-6Al-4V alloy with computational fluid dynamics (CFD) method. Simulation results showed that with increasing of tool rotational and decreasing tool traverse speed, the more frictional heat generates which causes formatio...
متن کاملNumerical Study of Entropy Generation for Natural Convection in Cylindrical Cavities
In this paper, an enhanced computational code was developed using finite-volume method for solving the incompressible natural convection flow within the cylindrical cavities. Grids were generated by an easy method with a view to computer program providing. An explicit integration algorithm was applied to find the steady state condition. Also instead of the conventional algorithms of SIMPLE, SIM...
متن کاملFriction Stir Welding؛ Material Flow؛ Heat Generation؛ Thermal Simulation؛ Poly methyl methacrylate (PMMA)
In this study, the effects of linear and rotational speed of the friction stir welding tool was investigated on the heat generation and distribution at surface and inside of workpiece, material flow and geometry of the welding area of poly methyl methacrylate (PMMA) workpiece. The commercial CFD Fluent 6.4 software was used to simulation of the process with computational fluid dynamic technique...
متن کاملMulti-boiling Heat Transfer Analysis of a Convective Straight Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation
In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the b...
متن کاملAnalysis of Heat transfer in Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation using Chebychev Spectral Collocation Method
In this work, analysis of heat transfer in porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Chebychev spectral collocation method. The numerical solutions are used to investigate the influence of various parameters on the thermal performance of the porous fin. The results show that increase in convective parameter, porosity parameter, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999